AI Meets Finance

About the Challenge

Data

  • Simulated data of transactions between thousands of clients (11k) in a mobile banking network.
  • Most agents behave based on statistical model of normal behavior.
  • But a few are committing fraud…

Task

  • Identify the fraudster accounts based on their transactional behavior
  • For the student track, an initial set of features is provided, but finding new, more informative ones, is incentivized!
  • The fraudster populations for the student and professional tracks are different.

Outcome

Profesional Track

Teilnehmende Teams: 23
Einreichungen: 160
 

Top 5 Scores

 1. 99.92%  — Spider Bobs — Ali Salehzadeh-Yazdi, Eda Cakir, Johannes Falk

2. .99.76% — Import teamName — Ayden Janssen, Robyn Sophie Kruse
3. 99.61% — OldSchool — Yale Hartmann
4. 92.14% — Kornstante — Fabian Wetjen, Wilhelm Jochim, Marcel Plutat
5. 76.68% — IntroToAML — Eike Voß,  Tom Splittgerber
 
 

Student Track

Teilnehmende Teams: 51
Einreichungen: 222
 

Top 5 Scores

1. 99.83% — Import teamName — Ayden Janssen, Robyn Sophie Kruse
2. 97.05% — Data Alchemy — Tobias Fricke
3. 88.95% — :^) — Arne Winter
4. 85.64% — DataForcer – Abhirup Sihna, Pritilata Saha
5. 82.15% — BitBubenBande — Jann Eike Ackermann, Joshua, Aning, Max Lehmann